National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Numerical model of lattice structure under dynamic loading made by Selective Laser Melting technology
Červinek, Ondřej ; Maňas, Pavel (referee) ; Vrána, Radek (advisor)
For the purpose of mechanical impact energy absorption in the transport industry are mainly used special profile absorbers. For highly specialized applications is required to use components that are designed for specific kind of deformation. Example of these parts are industrial-made metal foams or micro-lattice structures produced by SLM technology. This paper focuses on low-velocity dynamic loading prediction of BCC micro-lattice structure made of aluminum alloy AlSi10Mg by SLM technology (SLM 280HL). For this purpose dynamic FEM simulaton of the micro-lattice structure was developed, supplemented by model of BCC structure material obtained from mechanical testing. Real geometry of tested samples obtained from optical measurement (Atos Triple Scan III) was further implemented in the numerical model. Dynamic BCC structure load experiment was performed on a drop-weight tester. Behavior of structured material in drop-weight test was described by the course of deformation and reaction forces over time. Comparable results were obtained for flat loading of dynamic FEM simulation and experiment. Inclusion of production phenomena in simulation led to increased accuracy and compliance with experiment. Tool for testing the effect of geometry change on mechanical properties was created. To achieve more accurate results with puncture load, it is necessary to modify the material model with real material deformation at test sample failure.
Micro-lattice structures with variable strut diameter
Brulík, Karel ; Jaroš, Jan (referee) ; Červinek, Ondřej (advisor)
Due to their specific properties, micro-lattice structures have a great potential for use in energy absorption applications. It turns out that conventional micro-lattice structures with constant volume fraction can be designed for a known amount of absorbed energy. In real applications, however, we often do not know it in advance. Therefore, the use of functionally graded micro-lattice structures, which can be designed for a wider range of applied energies, appears to be more promising. The aim of this work is to compare micro-lattice structures with variable strut diameter made from 316L stainless steel by Selective Laser Melting technology in terms of energy absorption capability. For this purpose, two types of structures, F2BCC and F2BCC_45, were fabricated, both in configuration with constant, continuously variable and stepwise variable strut diameter. The structures were subsequently dynamically loaded using a drop-weight test, the results of which were described by the time history of deformation and forces. The greater amount of absorbed energy was measured for structures of type F2BCC_45, up to 73 % depending on the configuration of the structures. The results revealed that the variable strut diameter does not have a large effect on the amount of absorbed energy, but it significantly reduces the shock generated, up to 54 % depending on the type and configuration of the structure. This thesis provides a comprehensive view of the deformation and stress characteristics of both types of structures, and in particular a comparison of the effect of variable strut diameter.
Numerical model of lattice structure under dynamic loading made by Selective Laser Melting technology
Červinek, Ondřej ; Maňas, Pavel (referee) ; Vrána, Radek (advisor)
For the purpose of mechanical impact energy absorption in the transport industry are mainly used special profile absorbers. For highly specialized applications is required to use components that are designed for specific kind of deformation. Example of these parts are industrial-made metal foams or micro-lattice structures produced by SLM technology. This paper focuses on low-velocity dynamic loading prediction of BCC micro-lattice structure made of aluminum alloy AlSi10Mg by SLM technology (SLM 280HL). For this purpose dynamic FEM simulaton of the micro-lattice structure was developed, supplemented by model of BCC structure material obtained from mechanical testing. Real geometry of tested samples obtained from optical measurement (Atos Triple Scan III) was further implemented in the numerical model. Dynamic BCC structure load experiment was performed on a drop-weight tester. Behavior of structured material in drop-weight test was described by the course of deformation and reaction forces over time. Comparable results were obtained for flat loading of dynamic FEM simulation and experiment. Inclusion of production phenomena in simulation led to increased accuracy and compliance with experiment. Tool for testing the effect of geometry change on mechanical properties was created. To achieve more accurate results with puncture load, it is necessary to modify the material model with real material deformation at test sample failure.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.